Accuracy Round

Lexington High School

December 11th, 2021

1. [6] Sam writes three 3-digit positive integers (that don't end in 0) on the board and adds them together. Jessica reverses each of the integers, and adds the reversals together. (For example, $\overline{X Y Z}$ becomes $\overline{Z Y X}$.) What is the smallest possible positive three-digit difference between Sam's sum and Jessica's sum?
2. [8] A random rectangle (not necessarily a square) with positive integer dimensions is selected from the 2×4 grid below. The probability that the selected rectangle contains only white squares can be written as $\frac{a}{b}$ where a and b are relatively prime positive integers. Find $a+b$.

3. [10] Two circles with radius $2, \omega_{1}$ and ω_{2}, are centered at O_{1} and O_{2} respectively. The circles ω_{1} and ω_{2} are externally tangent to each other and internally tangent to a larger circle ω centered at O at points A and B, respectively. Let M be the midpoint of minor arc $A B$. Let P be the intersection of ω_{1} and $O_{1} M$, and let Q be the intersection of ω_{2} and $O_{2} M$. Given that there is a point R on ω such that $\triangle P Q R$ is equilateral, the radius of ω can be written as $\frac{a+\sqrt{b}}{c}$ where a, b, and c are positive integers and a and c are relatively prime. Find $a+b+c$.
4. [12] Zandrew Hao has n^{2} dollars, where n is an integer. He is a massive fan of the singer Pachary Zerry, and he wants to buy many copies of his 3 albums, which cost $\$ 8, \$ 623$, and $\$ 835$ (two of them are very rare). Find the sum of the 3 greatest values of n such that Zandrew can't spend all of his money on albums.
5. [14] In a rectangular prism with volume 24 , the sum of the lengths of its 12 edges is 60 , and the length of each space diagonal is $\sqrt{109}$. Let the dimensions of the prism be $a \times b \times c$, such that $a>b>c$. Given that a can be written as $\frac{p+\sqrt{q}}{r}$ where p, q, and r are integers and q is square-free, find $p+q+r$.
6. [16] Jared has 3 distinguishable Rolexes. Each day, he selects a subset of his Rolexes and wears them on his arm (the order he wears them does not matter). However, he does not want to wear the same Rolex 2 days in a row. How many ways can he wear his Rolexes during a 6 day period?
7. [18] Find the number of ways to tile a 12×3 board with 1×4 and 2×2 tiles with no overlap or uncovered space.
8. [20] Octagon $A B C D E F G H$ is inscribed in a circle where $A B=B C=C D=F G=13$ and $D E=E F=G H=H A=5$. The area of $A B C D E F G H$ can be expressed as $a+b \sqrt{c}$ where a, b, and c are positive integers, $\operatorname{gcd}(a, b)=1$, and c is squarefree. Find $a+b+c$.

9. [22] There exist some number of ordered triples of real numbers (x, y, z) that satisfy the following system of equations:

$$
\begin{aligned}
x+y+2 z & =6 \\
x^{2}+y^{2}+2 z^{2} & =18 \\
x^{3}+y^{3}+2 z^{3} & =54
\end{aligned}
$$

Given that the sum of all possible positive values of x can be expressed as $\frac{a+b \sqrt{c}}{d}$ where a, b, c, and d are positive integers, c is squarefree, and $\operatorname{gcd}(a, b, d)=1$, find the value of $a+b+c+d$.
10. [24] Convex cyclic quadrilateral $A B C D$ satisfies $A C \perp B D$ and $A C$ intersects $B D$ at H. Let the line through H perpendicular to $A D$ and the line through H perpendicular to $A B$ intersect $C B$ and $C D$ at P and Q, respectively. The circumcircle of $\triangle C P Q$ intersects line $A C$ again at $X \neq C$. Given that $A B=13, B D=14$, and $A D=15$, the length of $A X$ can be written as $\frac{a}{b}$ where a and b are relatively prime positive integers. Find $a+b$.
11. [TIEBREAKER] Estimate the value of e^{f}, where $f=e^{e}$.

